Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518065

RESUMO

Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.

2.
Plant Commun ; 4(1): 100423, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962545

RESUMO

Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.


Assuntos
Antocianinas , Açúcares , Açúcares/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Aclimatação , Fosfatos/metabolismo , Trioses/metabolismo
4.
Plant Physiol ; 162(1): 379-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471132

RESUMO

Photosynthetic carbon assimilation including photorespiration is dynamically regulated during the day/night cycle. This includes transcriptional regulation, such as the light induction of corresponding genes, but little is known about the contribution of photorespiratory metabolites to the regulation of gene expression. Here, we examined diurnal changes in the levels of photorespiratory metabolites, of enzymes of the photorespiratory carbon cycle, and of corresponding transcripts in wild-type plants of Arabidopsis (Arabidopsis thaliana) and in a mutant with altered photorespiratory flux due to the absence of the peroxisomal enzyme Hydroxypyruvate Reductase1 (HPR1). Metabolomics of the wild type showed that the relative amounts of most metabolites involved in photorespiration increased after the onset of light, exhibited maxima at the end of the day, and decreased during the night. In accordance with those findings, both the amounts of messenger RNAs encoding photorespiratory enzymes and the respective protein contents showed a comparable accumulation pattern. Deletion of HPR1 did not significantly alter most of the metabolite patterns relative to wild-type plants; only serine accumulated to a constitutively elevated amount in this mutant. In contrast, the hpr1 mutation resulted in considerable deregulation of the transcription of photorespiration-related genes. This transcriptional deregulation could also be induced by the external application of l-serine but not glycine to the Arabidopsis wild type, suggesting that serine acts as a metabolic signal for the transcriptional regulation of photorespiration, particularly in the glycine-to-serine interconversion reactions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Respiração Celular , Regulação da Expressão Gênica de Plantas , Serina/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Ritmo Circadiano , Glicina/metabolismo , Luz , Metabolômica , Peroxissomos/enzimologia , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Deleção de Sequência
5.
J Exp Bot ; 63(4): 1773-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22371326

RESUMO

Nitric oxide (NO) is a free radical molecule involved in signalling and in hypoxic metabolism. This work used the nitrate reductase double mutant of Arabidopsis thaliana (nia) and studied metabolic profiles, aconitase activity, and alternative oxidase (AOX) capacity and expression under normoxia and hypoxia (1% oxygen) in wild-type and nia plants. The roots of nia plants accumulated very little NO as compared to wild-type plants which exhibited ∼20-fold increase in NO emission under low oxygen conditions. These data suggest that nitrate reductase is involved in NO production either directly or by supplying nitrite to other sites of NO production (e.g. mitochondria). Various studies revealed that NO can induce AOX in mitochondria, but the mechanism has not been established yet. This study demonstrates that the NO produced in roots of wild-type plants inhibits aconitase which in turn leads to a marked increase in citrate levels. The accumulating citrate enhances AOX capacity, expression, and protein abundance. In contrast to wild-type plants, the nia double mutant failed to show AOX induction. The overall induction of AOX in wild-type roots correlated with accumulation of glycine, serine, leucine, lysine, and other amino acids. The findings show that NO inhibits aconitase under hypoxia which results in accumulation of citrate, the latter in turn inducing AOX and causing a shift of metabolism towards amino acid biosynthesis.


Assuntos
Aconitato Hidratase/antagonistas & inibidores , Aminoácidos/biossíntese , Arabidopsis/metabolismo , Proteínas Mitocondriais/biossíntese , Óxido Nítrico/metabolismo , Oxirredutases/biossíntese , Proteínas de Plantas/biossíntese , Aconitato Hidratase/metabolismo , Arabidopsis/enzimologia , Ácido Cítrico/metabolismo , Indução Enzimática , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Genótipo , Proteínas Mitocondriais/metabolismo , Nitrato Redutase/metabolismo , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
6.
Plant Physiol ; 155(2): 694-705, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21205613

RESUMO

Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO(2) assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Piruvatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/análise , Deleção de Genes , Técnicas de Inativação de Genes , Ácidos Glicéricos/metabolismo , Glioxilatos/metabolismo , Metabolômica , Mutagênese Insercional , Fotossíntese , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...